Section II: Basic Science Issues in Advanced Musculoskeletal Imaging and Computer-Assisted Surgery

Christian Lattermann and Branislav Jaramaz

This information is current as of April 3, 2009

Reprints and Permissions

Click here to [order reprints or request permission](http://jbjs.org) to use material from this article, or locate the article citation on jbjs.org and click on the [Reprints and Permissions] link.

Publisher Information

The Journal of Bone and Joint Surgery

20 Pickering Street, Needham, MA 02492-3157

[www jbjs org](http://www.jbjs.org)
Section II: Basic Science Issues in Advanced Musculoskeletal Imaging and Computer-Assisted Surgery

By Christian Lattermann, MD, and Branislav Jaramaz, PhD

Computer-assisted orthopaedic surgery as a technological tool has to be understood as an integrative process, incorporating the elements of clinical diagnosis, surgical planning, operative execution, and postoperative outcomes assessment. The overall goal of the application of computer-assisted orthopaedic surgery in the operating room is to improve the accuracy and precision of the surgical procedure. However, specific goals of each clinical procedure still need to be better defined so that the evaluation methodology can be universally shared and the results uniquely interpreted. It is also crucial to analyze different combinations of computer-assisted orthopaedic surgery elements for their combined accuracy and precision. With recent advances in tracking and registration, these goals gain additional importance. Active or passive optical tracking devices have proven to be accurate and efficient. Newer, electromagnetic devices provide the ability to track the distal end of the instrument, making flexible instruments possible. In the past, registration relied on fiducial markers, landmarks, or shapes. Some recent approaches eliminate the need for preoperative imaging by relying on direct collection of anatomic landmarks in an anatomic atlas. This statistical description of anatomic structures can be integrated with intraoperative imaging (fluoroscopy or ultrasound) and allow for the creation of patient-specific three-dimensional models. Innovative approaches in computer-assisted orthopaedic surgery include the concept of semi-active robots that add virtual safety barriers during minimally invasive surgery, revival of patient-specific templates for alignment of cutters and drills, and customized patient-specific implants. Most importantly, however, there is a critical need for improved outcome measures following the use of this technology.

Christian Lattermann, MD
Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, 740 South Limestone Street, Suite K401, Lexington, KY 40536-0284

Branislav Jaramaz, PhD
Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213. E-mail address for B. Jaramaz: branko@cs.cmu.edu

Disclosure: The authors did not receive any outside funding or grants in support of their research for or preparation of this work. Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity. No commercial entity paid or directed, or agreed to pay or direct, any benefits to any research fund, foundation, division, center, clinical practice, or other charitable or nonprofit organization with which the authors, or a member of their immediate families, are affiliated or associated.