Ovarian Cancer

When to Test and Emerging Therapies

2

-

Rachel W. Miller, MD Associate Professor Obstetrics and Gynecology Gynecologic Oncology

> art | science | healing ukhealthcare.uky.edu/new

UKHealthCare.

- 1

I

Faculty Disclosure

No financial interests to disclose.

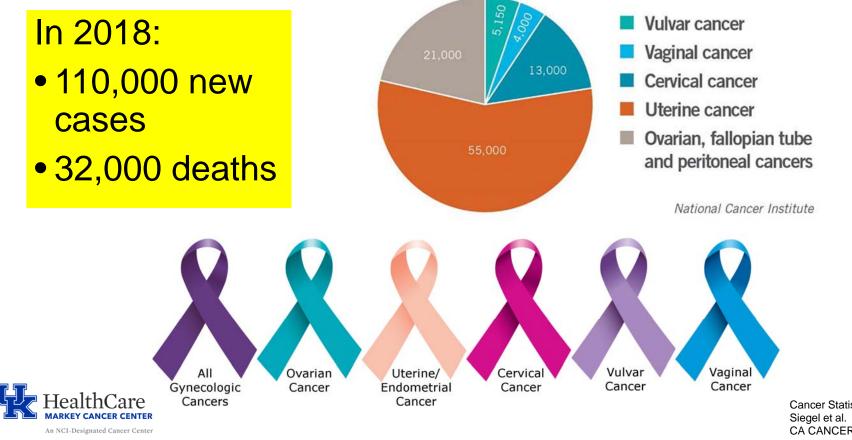
Educational Need/Practice Gap

Gap = Gynecologic cancers, especially ovarian cancer, have a high mortality rate when treated with conventional, non-targeted cytotoxic chemotherapy treatments.

Need = A greater understanding of novel treatment options, but especially targeted therapies for the treatment of advanced gynecologic cancers, represent a major unmet educational need.

Objectives

Upon completion of this educational activity, you will understand the diagnostic, prognostic, and therapeutic applications of comprehensive genomic profiling in ovarian cancer.



Expected Outcome

Providers will understand the role of comprehensive genomic profiling in ovarian cancer and recommendations according to National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology.

Comprehensive Genomic Profiling in Gynecologic Cancer

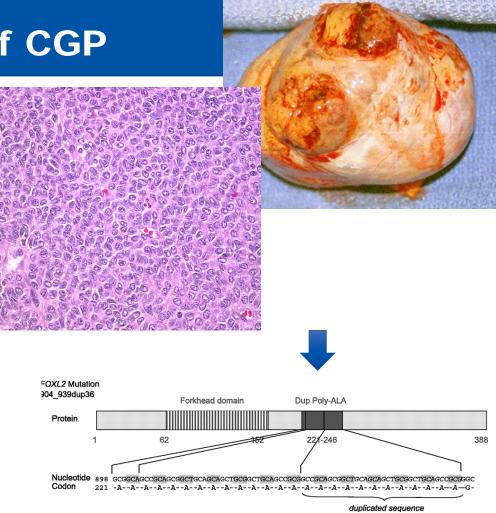
Number of Americans diagnosed each year

Cancer Statistics, 2018 Siegel et al. CA CANCER J CLIN 2018;68:7–30

Epithelial Ovarian Cancer

- Leading cause of death from gynecologic cancer in the US
- In 2018, it is estimated that
 - 22,240 new diagnoses
 - 14,070 deaths
- Fifth most common cause of cancer death

Females	6		
	Lung & bronchus	70,500	25%
	Breast	40,920	14%
	Colon & rectum	23,240	8%
	Pancreas	21,310	7%
	Ovary	14,070	5%
	Uterine corpus	11,350	4%
	Leukemia	10,100	4%
	Liver & intrahepatic bile duct	9,660	3%
	Non-Hodgkin lymphoma	8,400	3%
	Brain & other nervous system	7,340	3%
	All Sites	286,010	100%


Estimated Deaths

CA CANCER J CLIN 2018;68:7-30

Diagnostic Applications of CGP

- FOXL2 in adult granulosa cell tumors
 - 19% of tumors misdiagnosed
 - accounted for 72% of diseaserelated deaths
- SMARCA4 in ovarian small cell carcinoma
- DICER1 in Sertoli-Leydig cell tumors
- Absence of TP53 in low grade serous ovarian cancer

Bryk S, Farkkila A, Butzow R, et al. Characteristics and outcome of recurrence in molecularly defined adult-type ovarian granulosa cell tumors. Gynecol Oncol 2016: 143:571–577.

Prognostic Applications – Ovarian Cancer

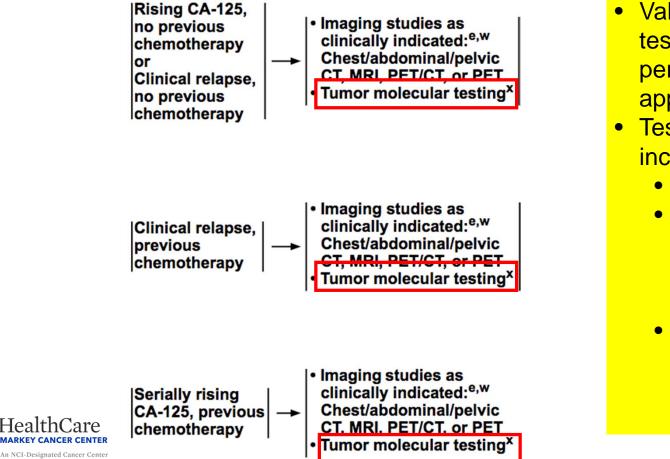
- Low grade serous ovarian cancer
 - BRAF mutations are associated with much better prognosis than mutations in KRAS
- High grade serous ovarian cancer
 - BRCA1 or 2 mutations associated with longer OS and increased sensitivity to platinum
 - CCNE1 gene amplification is a marker of worse OS and primary platinum resistance

Therapeutic Applications

	Clinically relevant genomic alteration	Potential targeted therapies ^a
Ovarian	BRCA1/2	PARP inhibitors
	KRAS	MEK inhibitors
<mark>Only</mark>	FDA-approved in G	Synecologic Cancer:
۰P	ARPi	
• P	embrolizumab	ECED SOLINGSS
• P	FGFR2	FGFR inhibitors
• P	FGFR2 POLE ultramutator	Anti-PD1 immune check-point inhibitors
• P	FGFR2	Anti-PD1 immune check-point inhibitors Anti-PD1 immune check-point inhibitors
• P	FGFR2 POLE ultramutator MSI-high	Anti-PD1 immune check-point inhibitors
	FGFR2 POLE ultramutator MSI-high ERBB2	Anti-PD1 immune check-point inhibitors Anti-PD1 immune check-point inhibitors HER2-targeting monoclonal antibody
	FGFR2 POLE ultramutator MSI-high ERBB2 PIK3CA	Anti-PD1 immune check-point inhibitors Anti-PD1 immune check-point inhibitors HER2-targeting monoclonal antibody PI3K inhibitors, mTOR inhibitors, AKT inhibitors
	FGFR2 POLE ultramutator MSI-high ERBB2 PIK3CA EGFR (SCC)	Anti-PD1 immune check-point inhibitors Anti-PD1 immune check-point inhibitors HER2-targeting monoclonal antibody PI3K inhibitors, mTOR inhibitors, AKT inhibitors Anti-EGFR targeted therapy

Genomic profiling of gynecologic cancers and implications for clinical practice. Prendergast, Emily; Elvin, Julia Current Opinion in Obstetrics & Gynecology. 29(1):18-25, February 2017.

Therapeutic Applications - Ovarian Cancer


Mutation	Therapy
BRCA 1 / 2	PARP inhibitors
KRAS	MEK inhibitors
BRAF	MEK, BRAF inhibitors
ERBB2	HER2/HER3 antibodies, EGFR inhibitors
ARID1A (clear cell)	PI3K, AKT, mTOR inhibitors
NF1	MEK inhibitors
CCND1, CCNE1, CDK4 mutations, CCND2 (amplification)	CDK 4/6 inhibitors

Genomic profiling of gynecologic cancers and implications for clinical practice. Prendergast, Emily; Elvin, Julia Current Opinion in Obstetrics & Gynecology. 29(1):18-25, February 2017. NCCN Network®

NCCN Guidelines Version 2.2018 Epithelial Ovarian Cancer/Fallopian Tube Cancer/Primary Peritoneal Cancer & Less Common Histopathologies

RECURRENT DISEASE^v

- Validated molecular testing should be performed in a CLIAapproved facility
- Testing should include at least:
 - BRCA1/2,
 - homologous recombination pathway genes, and
 - microsatellite instability or DNA mismatch repair

	National
	Comprehensive
CCN	Cancer
	Network [®]

NC

NCCN Guidelines Version 2.2018 Epithelial Ovarian Cancer/Fallopian Tube Cancer/Primary Peritoneal Cancer & Less Common Histopathologies

Principles of Systemic Therapy

	Cytotoxic Therapy (In alphabetical order)*		Targeted Therapy*
Preferred Agents	Platinum-Sensitive Disease ^{I,m} Carboplatin/gemcitabine ² Carboplatin/gemcitabine/bevacizumab ^{n,o,p,3} Carboplatin/liposomal doxorubicin ⁴ Carboplatin/paclitaxel ⁵ Carboplatin/paclitaxel/bevacizumab ^{I,n,o,p,6} Cisplatin/gemcitabine ⁷	Platinum-Resistant Disease Docetaxel ⁸ Etoposide, oral ⁹ Gemcitabine ^{10,11} Liposomal doxorubicin ^{10,11} Liposomal doxorubicin/bevacizumab ^{n,o,12} Paclitaxel (weekly) ¹³ ± pazopanib ¹⁴ Paclitaxel (weekly)/bevacizumab ^{n,o,12} Topotecan ^{15,16} Topotecan/bevacizumab ^{n,o,12}	<u>Single Agents</u> Bevacizumah ^{n,o,17,18} Olaparib ^{q,19} Rucaparib ^{r,20}

Olaparib

- Deleterious germline BRCA-mutated
- Treated with three or more lines of chemotherapy
- Response rate 34% response rate
- Median response duration of 7.9 months

Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33:244-250

Rucaparib

- Deleterious germline and/or somatic BRCA-mutated
- Treated with two or more lines of chemotherapy
- Patients with somatic mutations had same objective response rate (85%) and progression free interval (12.8 months) as patients with germline mutations

Swisher EM, Lin KK, Oza AM, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 2017;18:75-87

FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication

On May 23, 2017, the U.S. Food and Drug Administration granted accelerated approval to pembrolizumab (KEYTRUDA, Merck & Co.) for adult and pediatric patients with unresectable or metastatic, microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options or with MSI-H or dMMR colorectal cancer that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan.

This is the FDA's first tissue/site-agnostic approval.

NCCN Network®

NCCN Guidelines Version 2.2018 Epithelial Ovarian Cancer/Fallopian Tube Cancer/Primary Peritoneal Cancer & Less Common Histopathologies

Principles of Systemic Therapy

	Regimens (In alphabetical order) ^{a,I}	Recommended Use
	5-FU/leucovorin/oxaliplatin ± bevacizumab (category 2B for bevacizumab) ^{n,o}	Mucinous carcinoma
	Capecitabine + oxaliplatin ± bevacizumab (category 2B for bevacizumab) ^{n,o}	Mucinous carcinoma
Useful in Certain Circumstances	Carboplatin/paclitaxel, albumin bound (platinum-sensitive disease)	Paclitaxel, albumin bound may be substituted for taxane for confirmed hypersensitivity
	Carboplatin/paclitaxel ^t	Elderly patients (> age 70) with platinum-sensitive disease
	Pembrolizumab ²⁵	Microsatellite instability-high (MSI-H) or mismatch repair- deficient (dMMR) solid tumors ^u

Varga A, Piha-Paul SA, Ott PA, et al. Pembrolizumab in patients (pts) with PD-L1–positive (PD-L1+) advanced ovarian cancer: Updated analysis of KEYNOTE-028 [abstract]. J Clin Oncol 2017;35: Abstract 5513

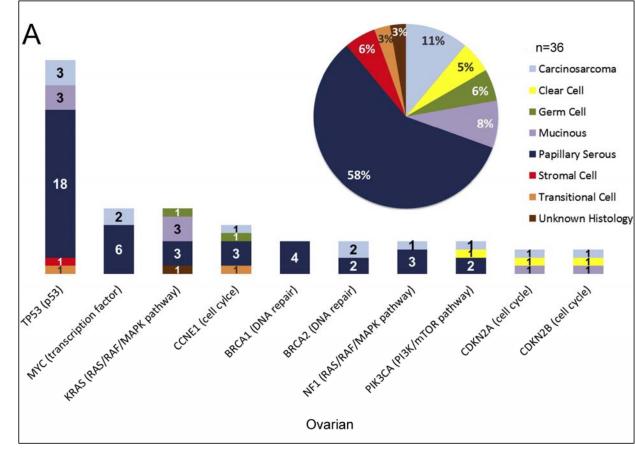
NCCN Guidelines Version 2.2018 Epithelial Ovarian Cancer/Fallopian Tube Cancer/Primary Peritoneal Cancer & Less Common Histopathologies

Principles of Systemic Therapy

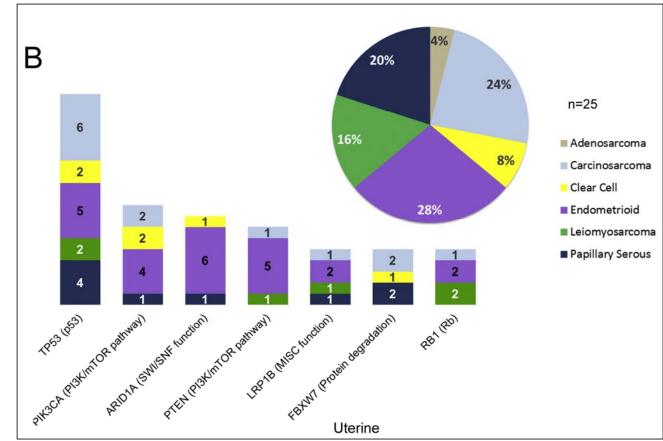
	Regimens ^a	Recommended Use
Useful in certain circumstances	Pazopanib ^y (category 3)	Single-agent maintenance therapy if complete clinical remission following primary therapy for stage II-IV disease, if no prior bevacizumab
	Bevacizumab ^{n,o}	May be continued as a single-agent maintenance therapy if used previously as part of a combination therapy, if partial or complete remission following: • Primary therapy for stage II-IV disease; or • Recurrence therapy for platinum-sensitive disease
	Niraparib ^x	Single-agent maintenance therapy if platinum-sensitive disease with partial or complete response following two or more lines of platinum-based therapy
	Olaparib ^x	Single-agent maintenance therapy if platinum-sensitive disease with partial or complete response following two or more lines of platinum-based therapy
	Rucaparib ^x	Single-agent maintenance therapy if platinum-sensitive disease with partial or complete response following two or more lines of platinum-based therapy

Use of comprehensive genomic profiling to direct point-of-care management of patients with gynecologic cancers

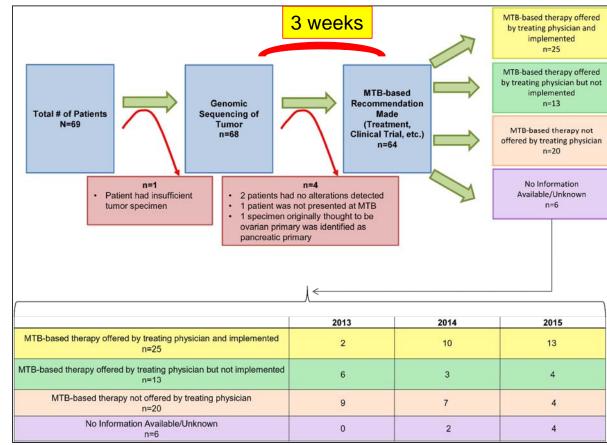
Gynecologic Oncology 141 (2016) 2–9


Lorna Rodriguez-Rodriguez, Kim M. Hirshfield, Veronica Rojas, Robert S. DiPaola, Darlene Gibbon, Mira Hellmann, Sara Isani, Aliza Leiser, Gregory M. Riedlinger, Allison Wagreich, Siraj M. Ali, Julia A. Elvin, Vincent A. Miller, Shridar Ganesan

- 69 patients with gynecologic cancers
- Prospective trial at Rutgers CINJ genomic profiling of patients with rare or refractory cancers
- Tumor specimens underwent CGP in commercial lab
- All classes of genomic alterations were assessed
- MTB review with consensus recommendations

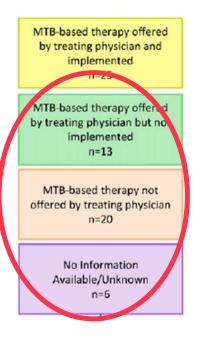


Tumor histological subtypes and most common mutations – Ovarian Cancer



Tumor histological subtypes and most common mutations – Uterine Cancer

Use of comprehensive genomic profiling to direct point-ofcare management of patients with gynecologic cancers

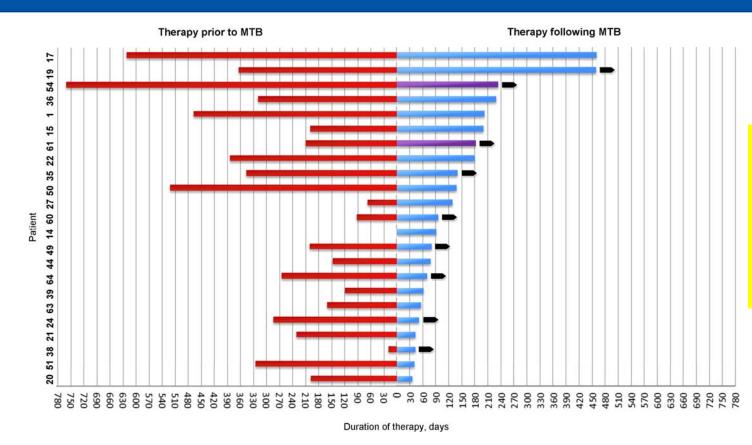

93% (64/69) had one or more clinically relevant genomic alterations

Rodriguez-Rodriguez et al.Gynecologic Oncology. 141(1):2-9, April 2016.

An NCI-Designated Cancer Center

Reasons for not receiving treatment:

- no evidence of disease/no advantage of adjuvant targeted therapy
- deteriorating performance status
- death
- lost to follow-up
- patient refusal
- drug could not be obtained
- drug contraindicated
- treating physician opted for a different treatment


Clinical Utility

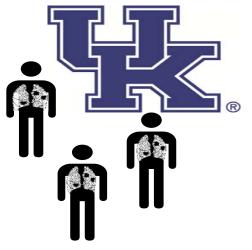
• MTB-based recommendations were implemented in 25 patients

- mTOR inhibitor with or without an aromatase inhibitor in PIK3CA or PI3K pathway mutations (endometrial cancer)
- MEK inhibitor in KRAS mutations (endometrial cancer)
- platinum-based chemotherapy
 - BRCA2 mutations
- radiation therapy
 - ATM mutations
- At least one clinical trial for 40 of the 64 patients (63%)
 - 12% (n = 3) were treated in the setting of a clinical trial

Progression-free survival

64% of patients had complete or partial response, stable disease, or clinical benefit

Use of comprehensive genomic profiling to direct point-of-care management of patients with gynecologic cancers


Gynecologic Oncology 141 (2016) 2-9

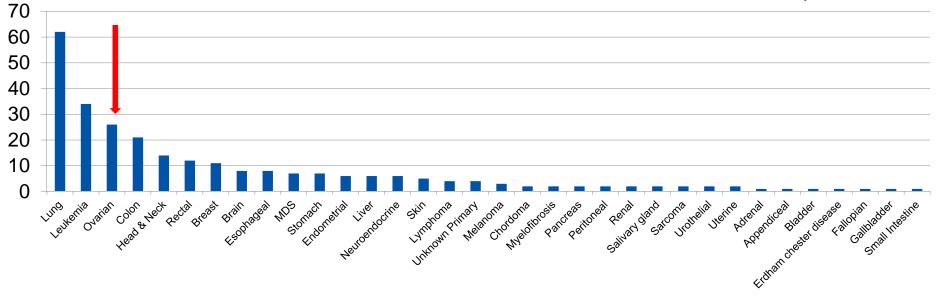
"This current proof-of-concept study shows that with a welltrained expert team, point-of-care management of gynecologic testing is feasible and patient benefit can be attained, supporting the need for further studies and guidelines on clinical decision making with greater availability of broad genomically based diagnostics."

The Markey Cancer Center Molecular Tumor Board

Genomic Report:

- Gene 1 mutation detected
- Gene 2
- Gene 3 mutation detected
- Gene 4

- **PMMTB Recommendations:**
- 1. Clinical trial
- 2. Off-label treatment
- 3. Standard treatment (not targeted)

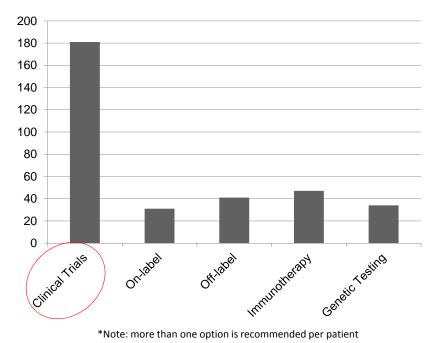


MTB Patient Statistics

- 256 Patients
 - 34 cancer types

Cancer Types

of patients



MTB Patient Reviews

- First meeting occurred on December 20, 2016
- 24 meetings thus far
- 96 patient cases presented
 - UK: 75
 - TJ Samson: 7
 - Owensboro: 4
 - KentuckyOne Health: 3
 - The Medical Center Bowling Green: 2
 - Baptist Health: 1
 - Hardin Memorial: 1
 - Highlands Regional: 1
 - King's Daughter's: 1
 - Tug Valley ARH: 1
- 160 UK patient cases reviewed (genomics only)

Recommendations Given

My UK HealthCare

Appointment Find a Doctor Find Us

Q

Markey Cancer Center

Cancer Types Patient Care Support Services Clinical Trials Refer a Patient Research Give About

Home » Markey Cancer Center » Patient Care » Precision Medicine Clinic (PMC) for Patients

Precision Medicine Clinic (PMC) for Patients

<u>Leadership</u>

Clinical Trials

Your First Visit

On This Page

Locations

Contact Information

Division of Gynecologic Oncology

