The Bioinformatics Component within the Biostatistics and Bioinformatics Shared Resource Facility

Chi Wang1,2, Jinze Lui1,3, Hunter Moseley1,4, Jinpeng Liu1,3, and Heidi L. Weiss1,2

1BSRF Markey Cancer Center, 2Department of Biostatistics, 3Department of Computer Science, 4Department of Molecular and Cellular Biochemistry

MISSION

Based on MCC EAB recommendations, current and anticipated needs of MCC Research Program members and careful research for similar services/support from other NCI cancer centers, we propose the Bioinformatics Component within the Biostatistics and Bioinformatics Shared Resource Facility. Our missions are:

• Provides expert bioinformatics solutions on study design, computational processing, statistical analysis, and integration of high-throughput genomic, transcriptomic, and metabolomic data for all MCC members
• Build and maintain an infrastructure that enables the application of robust and timely bioinformatics and bioinformatics analysis for investigators to both publish their work and obtain new funding
• Serve as a central point of contact and venue for collaboration with bioinformatics, computational biology, and systems biology specialists at UK who have additional expertise

PERSONNEL

Co-directed by Drs. Chi Wang and Jinze Liu, the Bioinformatics Component has 3 faculty and 1 staff with diverse expertise in microarray, next generation sequencing, and metabolomics data analysis.

• Chi Wang, PhD (microarray and next generation sequencing)
• Jinze Liu, PhD (next generation sequencing)
• Hunter Moseley, PhD (Metabolomics)
• Jinpeng Liu, MS

SERVICES

The Core aims to build and maintain robust and state-of-the-art analysis pipelines for

• Microarray Data Processing and Analysis
 The core has developed a pipeline for microarray data processing and analysis, including data normalization, quality assessment, differential expression identification and visualization, and pathway/functional analysis.

• Next Generation Sequencing Data Processing and Analysis
 The core has developed a pipeline for RNA-seq data analysis, including data quality control, read alignment, variant calling, functional annotation and the identification of statistically significant variants differentiating across multiple groups.

• RNA-seq data analysis
 The core has developed a pipeline for RNA-seq data analysis. The pipeline includes data quality control, read alignment, differential expression identification and visualization, and pathway/functional analysis. Besides gene expression analysis, we also support the discovery of novel alternative splicing as well as variant calling and fusion detection from RNA-seq data.

• Metabolomics Data Analysis
 The core provides metabolomics support for raw and intermediate data analysis of metabolomics datasets, especially stable isotope-resolved metabolomics datasets. Results of these analyses can be fed into other biostatistical analyses provided by the core. A custom downstream metabolic modeling and relative flux analyses can be provided on a limited basis.

Functional Integration with Other MCC Data

Experimental Design

• Integrative Analysis of Multiple Genomics Datasets
 The core provides bioinformatics support to analyze the interaction or correlation across multiple genomic data.

• Genomic Data Mining
 The core utilizes genomic data repositories such as GEO, Oncomine, and TCGA to correlate genomic data from specific gene(s) of interest with clinical outcomes.

• Other Large-Scale Genomic Data Analysis
 The core provides bioinformatics support for other genomic experimental platforms such as the NanoString nCounter system.

• Grant-writing Support
 The core will help investigators with genomic study design, sample size/power calculation, data analysis plan, and writing of bioinformatics section.

• Training and Outreach
 The core will advertise services as they become available and work with investigators to establish new data analysis pipelines. The core will give informational seminars on supported analysis routines, and will host training sessions and workshops on commonly used bioinformatics tools, resources, and databases.

Example 1. Microarray data analysis pipeline developed by Dr. Chi Wang. We have developed R and JAVA scripts to implement the pipeline and to efficiently utilize available software such as Bioconductor, Ingenuity Pathway Analysis and GSEA.

Example 2. Next generation sequencing RNA-seq data analysis pipeline developed by Dr. Jinze Liu. We have developed a pipeline including numerous novel computational methods for the analysis of RNA-seq data. The pipeline takes raw sequencing reads from experimental samples under different conditions. These reads will first go through quality control and adapter trimming followed by the alignment to the reference genome. The pipeline may identify differentially expressed genes through Edgetek based on gene read count. Alternatively, the pipeline also identifies differentially expressed isoforms using DiffSplice, a graph-based method that allows the discovery of novel isoforms and mutations.

Example 3: Metabolomics Data Analysis Pipeline developed by Dr. Hunter Moseley. We are implementing a full data analysis pipeline for stable isotope resolved metabolomics experimental data. This pipeline starts with raw data analysis and reduction followed by metabolite identification, natural abundance correction, and placement. This is followed by metabolic modeling at the level of functional groups (chemical moieties) for atomic tracing and flux analysis of stable isotopes through cellular metabolism. Finally, the pipeline feeds into other omics-level data streams for integration.

COLLABORATIVE WORKS WITH MCC INVESTIGATORS

Over the past 2 years, we have collaborated with more than 15 MCC investigators from all Research Programs (CS, RR, DP, and IP) in in vivo, biospecimen, clinical and population-based genomic studies utilizing different biostatistical and bioinformatics platforms. Our collaborations have led to many publications in high-quality journals.

MCC Investigator
Peter Zhou
Petar Zhou
Natasha Kyripanos
Chunting Liu
Vivek Rangnekar
Suleiman Masarweh
Tianyan Gao

Program
CS
CS
CS
CS
CS
DP
CS

Published journal
Cancer Cell
Cell Reports
Oncogene
PLOS ONE
J. Biological Chemistry
J. Cellular Physiology
Future Oncology
Gastroenterology

BIOMEDICAL METHODOLOGICAL WORKS

Our faculty members are actively developing novel bioinformatics methods to meet the computational and analytical challenges in dealing with complex high-throughput data. Over 20 papers have been published. Below are some of our recent publications.